很遺憾,因您的浏覽器版本過低導緻無法獲得最佳浏覽體驗,推薦下載安裝谷歌浏覽器!

終于有人把雲計算、大數據和 AI 講明白了(二)

2019-02-13  來自: 雲唯IT實訓雲計算培訓大數據培訓 浏覽次數:101

接上文:終于有人把雲計算大數據和 AI 講明白了(一)

三、大數據擁抱雲計算

在PaaS層中一個複雜的通用應用就是大數據平台。大數據是如何一步一步融入雲計算的呢?

3.1 數據不大也包含智慧

一開始這個大數據并不大,你想象原來才有多少數據?現在大家都去看電子書,上網看新聞了,在我們80後小時候,信息量沒有那麼大,也就看看書,看看報,一個星期的報紙加起來才有多少字啊,如果你不在一個大城市,一個普通的學校的圖書館加起來也沒幾個書架,是後來随着信息化的到來,信息才會越來越多。

首先我們來看一下大數據裡面的數據,就分三種類型,一種叫結構化的數據,一種叫非結構化的數據,還有一種叫半結構化的數據。什麼叫結構化的數據呢?叫有固定格式和有限長度的數據。例如填的表格就是結構化的數據,國籍:中華人民共和國,民族:漢,性别:男,這都叫結構化數據。現在越來越多的就是非結構化的數據,就是不定長,無固定格式的數據,例如網頁,有時候非常長,有時候幾句話就沒了,例如語音,視頻都是非結構化的數據。半結構化數據是一些xml或者html的格式的,不從事技術的可能不了解,但也沒有關系。

數據怎麼樣才能對人有用呢?其實數據本身不是有用的,必須要經過一定的處理。例如你每天跑步帶個手環收集的也是數據,網上這麼多網頁也是數據,我們稱為Data,數據本身沒有什麼用處,但是數據裡面包含一個很重要的東西,叫做信息Information,數據十分雜亂,經過梳理和清洗,才能夠稱為信息。信息會包含很多規律,我們需要從信息中将規律總結出來,稱為知識knowledge,知識改變命運。信息是很多的,但是有人看到了信息相當于白看,但是有人就從信息中看到了電商的未來,有人看到了直播的未來,所以人家就牛了,你如果沒有從信息中提取出知識,天天看朋友圈,也隻能在互聯網滾滾大潮中做個看客。有了知識,然後利用這些知識去應用于實戰,有的人會做得非常好,這個東西叫做智慧intelligence。有知識并不一定有智慧,例如好多學者很有知識,已經發生的事情可以從各個角度分析的頭頭是道,但一到實幹就歇菜,并不能轉化成為智慧。而很多的創業家之所以偉大,就是通過獲得的知識應用于實踐,最後做了很大的生意。

所以數據的應用分這四個步驟:數據,信息,知識,智慧。這是很多商家都想要的,你看我收集了這麼多的數據,能不能基于這些數據來幫我做下一步的決策,改善我的産品,例如讓用戶看視頻的時候旁邊彈出廣告,正好是他想買的東西,再如讓用戶聽音樂的時候,另外推薦一些他非常想聽的其他音樂。用戶在我的應用或者網站上随便點點鼠标,輸入文字對我來說都是數據,我就是要将其中某些東西提取出來,指導實踐,形成智慧,讓用戶陷入到我的應用裡面不可自拔,上了我的網就不想離開,手不停的點,不停的買,很多人說雙十一我都想斷網了,我老婆在上面不斷的買買買,買了A又推薦B,老婆大人說,“哎呀,B也是我喜歡的啊,老公我要買”。你說這個程序怎麼這麼牛,這麼有智慧,比我還了解我老婆,這件事情是怎麼做到的呢?

雲計算培訓

3.2 數據如何升華為智慧

數據的處理分幾個步驟,完成了才最後會有智慧。

第一個步驟叫數據的收集。首先得有數據,數據的收集有兩個方式,第一個方式是拿,專業點的說法叫抓取或者爬取,例如搜索引擎就是這麼做的,它把網上的所有的信息都下載到它的數據中心,然後你一搜才能搜出來。比如你去搜索的時候,結果會是一個列表,這個列表為什麼會在搜索引擎的公司裡面呢,就是因為他把這個數據啊都拿下來了,但是你一點鍊接,點出來這個網站就不在搜索引擎它們公司了。比如說新浪有個新聞,你拿百度搜出來,你不點的時候,那一頁在百度數據中心,一點出來的網頁就是在新浪的數據中心了。另外一個方式就是推送,有很多終端可以幫我收集數據,比如說小米手環,可以将你每天跑步的數據,心跳的數據,睡眠的數據都上傳到數據中心裡面。

第二個步驟是數據的傳輸。一般會通過隊列方式進行,因為數據量實在是太大了,數據必須經過處理才會有用,可是系統處理不過來,隻好排好隊,慢慢的處理。

第三個步驟是數據的存儲。現在數據就是金錢,掌握了數據就相當于掌握了錢。要不然網站怎麼知道你想買什麼呢?就是因為它有你曆史的交易的數據,這個信息可不能給别人,十分寶貴,所以需要存儲下來。

第四個步驟是數據的處理和分析。上面存儲的數據是原始數據,原始數據多是雜亂無章的,有很多垃圾數據在裡面,因而需要清洗和過濾,得到一些高質量的數據。對于高質量的數據,就可以進行分析,從而對數據進行分類,或者發現數據之間的相互關系,得到知識。比如盛傳的沃爾瑪超市的啤酒和尿布的故事,就是通過對人們的購買數據進行分析,發現了男人一般買尿布的時候,會同時購買啤酒,這樣就發現了啤酒和尿布之間的相互關系,獲得知識,然後應用到實踐中,将啤酒和尿布的櫃台弄的很近,就獲得了智慧。

第五個步驟就是對于數據的檢索和挖掘。檢索就是搜索,所謂外事不決問google,内事不決問百度。内外兩大搜索引擎都是講分析後的數據放入搜索引擎,從而人們想尋找信息的時候,一搜就有了。另外就是挖掘,僅僅搜索出來已經不能滿足人們的要求了,還需要從信息中挖掘出相互的關系。比如财經搜索,當搜索某個公司股票的時候,該公司的高管是不是也應該被挖掘出來呢?如果僅僅搜索出這個公司的股票發現漲的特别好,于是你就去買了,其實其高管發了一個聲明,對股票十分不利,第二天就跌了,這不坑害廣大股民麼?所以通過各種算法挖掘數據中的關系,形成知識庫,十分重要。

雲計算培訓

雲計算培訓

3.3 大數據時代,衆人拾柴火焰高

當數據量很小的時候,很少的幾台機器就能解決。慢慢的當數據量越來越大,最 牛的服務器都解決不了問題的時候,就想怎麼辦呢?要聚合多台機器的力量,大家齊心協力一起把這個事搞定,衆人拾柴火焰高。

對于數據的收集,對于IoT來講,外面部署這成千上萬的檢測設備,将大量的溫度,适度,監控,電力等等數據統統收集上來,對于互聯網網頁的搜索引擎來講,需要将整個互聯網所有的網頁都下載下來,這顯然一台機器做不到,需要多台機器組成網絡爬蟲系統,每台機器下載一部分,同時工作,才能在有限的時間内,将海量的網頁下載完畢。

雲計算培訓

對于數據的傳輸,一個内存裡面的隊列肯定會被大量的數據擠爆掉,于是就産生了基于硬盤的分布式隊列,這樣隊列可以多台機器同時傳輸,随你數據量多大,隻要我的隊列足夠多,管道足夠粗,就能夠撐得住。

雲計算培訓

對于數據的存儲,一台機器的文件系統肯定是放不下了,所以需要一個很大的分布式文件系統來做這件事情,把多台機器的硬盤打成一塊大的文件系統。

雲計算培訓

再如數據的分析,可能需要對大量的數據做分解,統計,彙總,一台機器肯定搞不定,處理到猴年馬月也分析不完,于是就有分布式計算的方法,将大量的數據分成小份,每台機器處理一小份,多台機器并行處理,很快就能算完。例如著名的Terasort對1個TB的數據排序,相當于1024G,如果單機處理,怎麼也要幾個小時,但是并行處理209秒就完成了。

雲計算培訓

雲計算培訓

雲計算培訓

所以說大數據平台,什麼叫做大數據,說白了就是一台機器幹不完,大家一起幹。随着數據量越來越大,很多不大的公司都需要處理相當多的數據,這些小公司沒有這麼多機器可怎麼辦呢?

3.4 大數據需要雲計算雲計算需要大數據

說到這裡,大家想起雲計算了吧。當想要幹這些活的時候,需要好多好多的機器一塊做,真的是想什麼時候要,想要多少就要多少。例如大數據分析公司的财務情況,可能一周分析一次,如果要把這一百台機器或者一千台機器都在那放着,一周用一次對吧,非常浪費。那能不能需要計算的時候,把這一千台機器拿出來,然後不算的時候,這一千台機器可以去幹别的事情。誰能做這個事兒呢?隻有雲計算,可以為大數據的運算提供資源層的靈活性。而雲計算也會部署大數據放到它的PaaS平台上,作為一個非常非常重要的通用應用。因為大數據平台能夠使得多台機器一起幹一個事兒,這個東西不是一般人能開發出來的,也不是一般人玩得轉的,怎麼也得雇個幾十上百号人才能把這個玩起來,所以說就像數據庫一樣,其實還是需要有一幫專業的人來玩這個東西。現在公有雲上基本上都會有大數據的解決方案了,一個小公司我需要大數據平台的時候,不需要采購一千台機器,隻要到公有雲上一點,這一千台機器都出來了,并且上面已經部署好了的大數據平台,隻要把數據放進去算就可以了。

雲計算需要大數據,大數據需要雲計算,兩個人就這樣結合了。

四、人工智能擁抱大數據

4.1 機器什麼時候才能懂人心

雖說有了大數據,人的欲望總是這個不能夠滿足。雖說在大數據平台裡面有搜索引擎這個東西,想要什麼東西我一搜就出來了。但是也存在這樣的情況,我想要的東西不會搜,表達不出來,搜索出來的又不是我想要的。例如音樂軟件裡面推薦一首歌,這首歌我沒聽過,當然不知道名字,也沒法搜,但是軟件推薦給我,我的确喜歡,這就是搜索做不到的事情。當人們使用這種應用的時候,會發現機器知道我想要什麼,而不是說當我想要的時候,去機器裡面搜索。這個機器真像我的朋友一樣懂我,這就有點人工智能的意思了。

人們很早就在想這個事情了。最早的時候,人們想象,如果要是有一堵牆,牆後面是個機器,我給它說話,它就給我回應,我如果感覺不出它那邊是人還是機器,那它就真的是一個人工智能的東西了。

4.2 讓機器學會推理

怎麼才能做到這一點呢?人們就想:我首先要告訴計算機人類的推理的能力。你看人重要的是什麼呀,人和動物的區别在什麼呀,就是能推理。我要是把我這個推理的能力啊告訴機器,機器就能根據你的提問,推理出相應的回答,真能這樣多好。推理其實人們慢慢的讓機器能夠做到一些了,例如證明數學公式。這是一個非常讓人驚喜的一個過程,機器竟然能夠證明數學公式。但是慢慢發現其實這個結果,也沒有那麼令人驚喜,因為大家發現了一個問題,數學公式非常嚴謹,推理過程也非常嚴謹,而且數學公式很容易拿機器來進行表達,程序也相對容易表達。然而人類的語言就沒這麼簡單了,比如今天晚上,你和你女朋友約會,你女朋友說:如果你早來,我沒來,你等着,如果我早來,你沒來,你等着。這個機器就比比較難理解了,但是人都懂,所以你和女朋友約會,你是不敢遲到的。

4.3 教給機器知識

所以僅僅告訴機器嚴格的推理是不夠的,還要告訴機器一些知識。但是知識這個事兒,一般人可能就做不來了,可能專家可以,比如語言領域的專家,或者财經領域的專家。語言領域和财經領域知識能不能表示成像數學公式一樣稍微嚴格點呢?例如語言專家可能會總結出主謂賓定狀補這些語法規則,主語後面一定是謂語,謂語後面一定是賓語,将這些總結出來,并嚴格表達出來不久行了嗎?後來發現這個不行,太難總結了,語言表達千變萬化。就拿主謂賓的例子,很多時候在口語裡面就省略了謂語,别人問:你誰啊?我回答:我劉超。但是你不能規定在語音語義識别的時候,要求對着機器說标準的書面語,這樣還是不夠智能,就像羅永浩在一次演講中說的那樣,每次對着手機,用書面語說:請幫我呼叫某某某,這是一件很尴尬的事情。

人工智能這個階段叫做專家系統。專家系統不易成功,一方面是知識比較難總結,另一方面總結出來的知識難以教給計算機。因為你自己還迷迷糊糊,似乎覺得有規律,就是說不出來,就怎麼能夠通過編程教給計算機呢?

4.4 算了,教不會你自己學吧

于是人們想到,看來機器是和人完全不一樣的物種,幹脆讓機器自己學習好了。機器怎麼學習呢?既然機器的統計能力這麼強,基于統計學習,一定能從大量的數字中發現一定的規律。

其實在娛樂圈有很好的一個例子,可見一斑

有一位網友統計了知名歌手在大陸發行的 9 張專輯中 117 首歌曲的歌詞,同一詞語在一首歌出現隻算一次,形容詞、名詞和動詞的前十名如下表所示(詞語後面的數字是出現的次數):

a形容詞b名詞c動詞
0孤獨:340生命:500愛:54
1自由:171路:371碎:37
2迷惘:162夜:292哭:35
3堅強:133天空:243死:27
4絕望:84孩子:234飛:26
5青春:75雨:215夢想:14
6迷茫:66石頭:96祈禱:10
7光明:67鳥:97離去:10

如果我們随便寫一串數字,然後按照數位依次在形容詞、名詞和動詞中取出一個詞,連在一起會怎麼樣呢?

例如取圓周率 3.1415926,對應的詞語是:堅強,路,飛,自由,雨,埋,迷惘。稍微連接和潤色一下:

堅強的孩子,

依然前行在路上,

張開翅膀飛向自由,

讓雨水埋葬他的迷惘。

是不是有點感覺了?當然真正基于統計的學習算法比這個簡單的統計複雜的多。

然而統計學習比較容易理解簡單的相關性,例如一個詞和另一個詞總是一起出現,兩個詞應該有關系,而無法表達複雜的相關性,并且統計方法的公式往往非常複雜,為了簡化計算,常常做出各種獨立性的假設,來降低公式的計算難度,然而現實生活中,具有獨立性的事件是相對較少的。

4.5 模拟大腦的工作方式

于是人類開始從機器的世界,反思人類的世界是怎麼工作的。

雲計算培訓

人類的腦子裡面不是存儲着大量的規則,也不是記錄着大量的統計數據,而是通過神經元的觸發實現的,每個神經元有從其他神經元的輸入,當接收到輸入的時候,會産生一個輸出來刺激其他的神經元,于是大量的神經元相互反應,最終形成各種輸出的結果。例如當人們看到美女瞳孔放大,絕不是大腦根據身材比例進行規則判斷,也不是将人生中看過的所有的美女都統計一遍,而是神經元從視網膜觸發到大腦再回到瞳孔。在這個過程中,其實很難總結出每個神經元對最終的結果起到了哪些作用,反正就是起作用了。

于是人們開始用一個數學單元模拟神經元

這個神經元有輸入,有輸出,輸入和輸出之間通過一個公式來表示,輸入根據重要程度不同(權重),影響着輸出。

雲計算培訓

于是将n個神經元通過像一張神經網絡一樣連接在一起,n這個數字可以很大很大,所有的神經元可以分成很多列,每一列很多個排列起來,每個神經元的對于輸入的權重可以都不相同,從而每個神經元的公式也不相同。當人們從這張網絡中輸入一個東西的時候,希望輸出一個對人類來講正确的結果。例如上面的例子,輸入一個寫着2的圖片,輸出的列表裡面第二個數字最大,其實從機器來講,它既不知道輸入的這個圖片寫的是2,也不知道輸出的這一系列數字的意義,沒關系,人知道意義就可以了。正如對于神經元來說,他們既不知道視網膜看到的是美女,也不知道瞳孔放大是為了看的清楚,反正看到美女,瞳孔放大了,就可以了。

對于任何一張神經網絡,誰也不敢保證輸入是2,輸出一定是第二個數字最大,要保證這個結果,需要訓練和學習。畢竟看到美女而瞳孔放大也是人類很多年進化的結果。學習的過程就是,輸入大量的圖片,如果結果不是想要的結果,則進行調整。如何調整呢,就是每個神經元的每個權重都向目标進行微調,由于神經元和權重實在是太多了,所以整張網絡産生的結果很難表現出非此即彼的結果,而是向着結果微微的進步,最終能夠達到目标結果。當然這些調整的策略還是非常有技巧的,需要算法的高手來仔細的調整。正如人類見到美女,瞳孔一開始沒有放大到能看清楚,于是美女跟别人跑了,下次學習的結果是瞳孔放大一點點,而不是放大鼻孔。

4.6 沒道理但做得到

聽起來也沒有那麼有道理,但是的确能做到,就是這麼任性。

神經網絡的普遍性定理是這樣說的,假設某個人給你某種複雜奇特的函數,f(x):

雲計算培訓

不管這個函數是什麼樣的,總會确保有個神經網絡能夠對任何可能的輸入x,其值f(x)(或者某個能夠準确的近似)是神經網絡的輸出。

如果在函數代表着規律,也意味着這個規律無論多麼奇妙,多麼不能理解,都是能通過大量的神經元,通過大量權重的調整,表示出來的。

4.7 人工智能的經濟學解釋

這讓我想到了經濟學,于是比較容易理解了。

雲計算培訓

我們把每個神經元當成社會中從事經濟活動的個體。于是神經網絡相當于整個經濟社會,每個神經元對于社會的輸入,都有權重的調整,做出相應的輸出,比如工資漲了,菜價也漲了,股票跌了,我應該怎麼辦,怎麼花自己的錢。這裡面沒有規律麼?肯定有,但是具體什麼規律呢?卻很難說清楚。

基于專家系統的經濟屬于計劃經濟,整個經濟規律的表示不希望通過每個經濟個體的獨立決策表現出來,而是希望通過專家的高屋建瓴和遠見卓識總結出來。專家永遠不可能知道哪個城市的哪個街道缺少一個賣甜豆腐腦的。于是專家說應該産多少鋼鐵,産多少饅頭,往往距離人民生活的真正需求有較大的差距,就算整個計劃書寫個幾百頁,也無法表達隐藏在人民生活中的小規律。

基于統計的宏觀調控就靠譜的多了,每年統計局都會統計整個社會的就業率,通脹率,GDP等等指标,這些指标往往代表着很多的内在規律,雖然不能夠精确表達,但是相對靠譜。然而基于統計的規律總結表達相對比較粗糙,比如經濟學家看到這些統計數據可以總結出長期來看房價是漲還是跌,股票長期來看是漲還是跌,如果經濟總體上揚,房價和股票應該都是漲的。但是基于統計數據,無法總結出股票,物價的微小波動規律。

基于神經網絡的微觀經濟學才是對整個經濟規律最最準确的表達,每個人對于從社會中的輸入,進行各自的調整,并且調整同樣會作為輸入反饋到社會中。想象一下股 市行情細微的波動曲線,正是每個獨立的個體各自不斷交易的結果,沒有統一的規律可循。而每個人根據整個社會的輸入進行獨立決策,當某些因素經過多次訓練,也會形成宏觀上的統計性的規律,這也就是宏觀經濟學所能看到的。例如每次貨币大量發行,最後房價都會上漲,多次訓練後,人們也就都學會了。

4.8 人工智能需要大數據

然而神經網絡包含這麼多的節點,每個節點包含非常多的參數,整個參數量實在是太大了,需要的計算量實在太大,但是沒有關系啊,我們有大數據平台,可以彙聚多台機器的力量一起來計算,才能在有限的時間内得到想要的結果。

人工智能可以做的事情非常多,例如可以鑒别垃圾郵件,鑒别黃色暴力文字和圖片等。這也是經曆了三個階段的。第一個階段依賴于關鍵詞黑白名單和過濾技術,包含哪些詞就是黃色或者暴力的文字。随着這個網絡語言越來越多,詞也不斷的變化,不斷的更新這個詞庫就有點顧不過來。第二個階段時,基于一些新的算法,比如說貝葉斯過濾等,你不用管貝葉斯算法是什麼,但是這個名字你應該聽過,這個一個基于概率的算法。第三個階段就是基于大數據和人工智能,進行更加精準的用戶畫像和文本理解和圖像理解。

由于人工智能算法多是依賴于大量的數據的,這些數據往往需要面向某個特定的領域(例如電商,郵箱)進行長期的積累,如果沒有數據,就算有人工智能算法也白搭,所以人工智能程序很少像前面的IaaS和PaaS一樣,将人工智能程序給某個客戶安裝一套讓客戶去用,因為給某個客戶單獨安裝一套,客戶沒有相關的數據做訓練,結果往往是很差的。但是雲計算廠商往往是積累了大量數據的,于是就在雲計算廠商裡面安裝一套,暴露一個服務接口,比如您想鑒别一個文本是不是涉及黃色和暴力,直接用這個在線服務就可以了。這種形勢的服務,在雲計算裡面稱為軟件即服務,SaaS (Software AS A Service)

于是工智能程序作為SaaS平台進入了雲計算

五、雲計算,大數據,人工智能過上了美好的生活

終于雲計算的三兄弟湊齊了,分别是IaaS,PaaS和SaaS,所以一般在一個雲計算平台上,雲,大數據,人工智能都能找得到。對一個大數據公司,積累了大量的數據,也會使用一些人工智能的算法提供一些服務。對于一個人工智能公司,也不可能沒有大數據平台支撐。所以雲計算,大數據,人工智能就這樣整合起來,完成了相遇,相識,相知。


關鍵詞: 雲計算培訓   大數據培訓   0基礎轉行   IT培訓  

雲唯IT實訓 一家對結果負責的IT定崗實訓機構  專注雲計算培訓、大數據培訓的高新IT人才培訓基地

【0基礎 0費用 IT培訓 名企名師 高薪就業】隻專注在IT雲計算培訓,大數據培訓領域。


版權所有Copyright 2014 - 2019

技術支持:北京IT雲計算培訓 網站地圖 XML

本站關鍵字: IT培訓 雲計算培訓 大數據培訓 Web前端培訓 大數據營銷培訓


掃一掃訪問移動端
http://gtxlra2.juhua774388.cn| http://pvfq.juhua774388.cn| http://r8ic.juhua774388.cn| http://zecpkq.juhua774388.cn| http://wu77lg3.juhua774388.cn|