很遺憾,因您的浏覽器版本過低導緻無法獲得最佳浏覽體驗,推薦下載安裝谷歌浏覽器!

2018年,大數據、雲計算将如何攪動市場?

2018-01-20  來自: 勵牛課思(北京)信息技術有限公司 浏覽次數:287

2018年,熱門技術仍将繼續享受萬衆矚目,但也發生了一些變化。

過去的一年,提起新技術,可以說不勝枚舉:雲計算的使用速度超過了分析師的預測,并衍生了一些新技術;人工智能被引入到日常生活的方方面面;物聯網和邊緣計算應運而生;大量的雲計算技術變為現實,如Kubernetes,serverless,以及雲數據庫等。新的一年是時候分析這些趨勢的落地情況,并一下預測2018年科技領域的趨勢。

誠然,大家都喜歡新技術,但一般的企業主、IT買家和軟件開發人員對這一巨大的創新并不太了解,而且不知道如何将其轉化為商業價值。為此,我們探讨了一些可能在2018年會看到的趨勢,其重點将是如何使新技術變得更容易和可消費。

一切趨向serveless化

亞馬遜和其他雲服務提供商正在競相獲取和保持其市場份額,因此他們不斷提高跨服務集成的水平,以提高開發人員的生産力,并加強客戶粘性程度。例如亞馬遜在最近的AWS Re:Invent大會上推出了新的數據庫服務産品,并全面集成了人工智能圖書館和其他工具。同時,它也開始區分不同形式的serverless:AWS Lambda是關于serverless功能,而AWS Aurora和Athena則是關于serverless數據庫,從而将serverless的定義擴展到任何可隐藏底層服務器的領域。據推測,現在有更多的雲服務将能夠通過該定義稱自己為“serverless”了。

2018年,我們将看到雲供應商會更加重視并進一步整合個性化服務。他們還将關注與人工智能、數據管理和serverless相關的服務。這些解決方案将使開發人員和操作人員的工作更簡單,并隐藏其固有的複雜性。然而,他們确實帶來了更大的用戶粘性風險。

在2017年,Kubernetes作為容器編配的标準吸引了所有的雲供應商。2018年,我們将看到越來越多的廠商将在Kubernetes上建立的服務,該服務可以為私有雲産品提供多雲服務。Iguazio的Nuclio就是這樣一個開放和多雲服務器平台中一個很好的例子,Red Hat的Openshift 多雲 PaaS也是如此。

智能邊緣vs私有雲

雲服務确保了企業所需的業務敏捷性,這對開發數據驅動的應用程序來說是非常有必要的,無論是在初創公司還是在大型企業中。挑戰在于,企業不能忽略數據的引力,因為許多數據源仍然處在邊緣領域。5G帶寬,延遲,新法規如GDPR,以及更多的因素強制企業将計算和存儲放在離數據源更近的地方。

今天的公有雲模型是服務用戶消費的,因此開發人員和用戶可以繞過 IT,引入一些serveless的功能,使用自助服務數據庫,甚至可以将視頻上傳到雲服務中,并将其轉換為所需的語言。但是,當使用本地替代方案時,你必須自己構建服務,而技術棧的發展速度非常之快,所以IT團隊幾乎不可能構建出可以與雲替代方案相比較的現代化服務。

标簽為“私有雲”的IT供應商解決方案與真正的雲完全不同,因為它們關注的是自動化IT操作。它們沒有提供更高級别的面向用戶和開發人員的服務——它最終是将幾十個單獨的開源或商業軟件包組合起來,添加常見的安全層、日志記錄和配置管理等,這也為雲供應商和新公司進入邊緣領域提供了機會。

2017年,微軟首席執行官Satya Nadella越來越關注他所謂的“智能邊緣”。微軟推出了Azure Stack,這是Azure雲的一個迷你版本,不幸的是,這隻包含微軟在雲計算中提供的一小部分服務。之後,亞馬遜也開始推出名為“Snowball Edge”的邊緣設備。

智能邊緣不是私有雲。它提供了與公有雲相同的服務和操作模型,但它是本地訪問的,并且在許多情況下是由一個中心雲操作和維護的,就像操作人員管理我們的有線機頂盒一樣。

在2018年,傳統的私有雲市場将會逐漸萎縮,同時智能邊緣的勢頭将會增長。雲提供商将增加邊緣産品,新公司将進入該領域,在某些情況下,通過集成産品到特定的垂直應用程序或用例上。

雲計算培訓|運維培訓|人工智能培訓|網絡安全培訓-雲唯IT實訓

大數據到連續數據

在過去的幾年中,企業已經開始開發由主要IT技術驅動的大數據應用。它的目标是收集、管理和集中分析業務數據和日志,以便将來應用。數據收集在Hadoop集群和數據倉庫解決方案中,然後由一組數據科學家使用,他們運行并進行批量處理作業并生成一些報告或儀表盤。然而,根據所有知名分析師的偵測,這種方法已經被證明是失敗的,據Gartner的數據顯示有70%的公司沒有看到任何投資回報率。所以,數據必須是可操作的,才能從中獲得ROI。它必須集成到業務流程中,并從新的數據中派生出來,就像我們在目标廣告和谷歌、Facebook的關鍵詞鎖定中看到的一樣。

數據洞察必須嵌入到現代商業應用中。例如,訪問一個網站或使用聊天機器人的客戶需要根據其最近的活動或個人簡介來獲得針對目标内容的即時響應。從物聯網或移動設備收集到的傳感數據連續不斷地流動,需要立即采取行動來驅動警報、檢測安全違規、提供預測性維護,或啟用糾正措施。用于監視和國家機密的可視化數據必須實時查看;零售商還利用它來分析銷售數據,如庫存狀況、客戶偏好以及基于觀察客戶活動獲得的實時建議。數據和實時分析通過自動化的過程降低了業務成本。汽車正變得越來越自動化。電話推銷員和助手被機器人取代。艦隊、卡車、出租車司機或技術人員由人工智能和事件驅動的邏輯統一編排,以最大限度地利用資源。

所有這些都已經在2017年發生了。

像Hadoop和數據倉庫這樣的技術十年前就已經出現了,比人工智能、流處理、内存或閃存技術出現的早。企業發現,構建數據湖的價值是有限的,因為他們可以通過使用更簡單的雲技術來進行數據挖掘。而關注的焦點也從主要是收集數據轉到持續使用數據,這一領域的技術主要集中在收集靜止和以IT驅動過程中的數據,而非流動的數據。

2018年,人們将看到從大數據向快速、連續數據驅動型應用程序的持續轉變。數據将被各種各樣的來源不斷地抓取。與預先學習或不斷學習的人工智能模型相比,它将在實時的情況下被語境化、豐富和聚合,這樣它就可以立即對用戶産生響應,驅動操作,并在實時的交互式儀表盤中呈現。

開發人員将使用預先打包的雲産品,或者使用相關的原生雲服務集成解決方案。在企業中,焦點将從IT轉移到業務部門和應用程序開發人員,他們将在現有的業務邏輯、web門戶和日常客戶交互中嵌入數據驅動的決策。

總之,2018年,我們将看到這些變化:

1、智能邊緣領域将會增長,傳統的私有雲市場将會萎縮。

2、針對特定行業和垂直領域的人工智能軟件解決方案,AI模型将開始開放和跨平台。

3、快速的數據、連續的應用程序和雲服務将取代大數據和Hadoop。

4、雲服務将變得更易用,從而增加其與傳統和私有雲解決方案之間的差距。

雲唯IT實訓 一家對結果負責的IT定崗實訓機構  專注雲計算培訓、大數據培訓的高新IT人才培訓基地

【0基礎 0費用 IT培訓 名企名師 高薪就業】隻專注在IT雲計算培訓,大數據培訓領域。


版權所有Copyright 2014 - 2019

技術支持:北京IT雲計算培訓 網站地圖 XML

本站關鍵字: IT培訓 雲計算培訓 大數據培訓 Web前端培訓 大數據營銷培訓


掃一掃訪問移動端